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Abstract— Obtaining whole-body bipedal locomotion con-
trollers that produce motions in the style of a human remains
a challenging problem. To produce human-like locomotion,
the robot must not only stabilize itself during movement
but also execute complex whole-body motions that, while not
necessarily aiding stability, enhance the expressiveness and
energy efficiency of motion. Reinforcement learning has shown
promise in learning locomotion controllers for dynamic motions,
however, developing locomotion controllers for these stylized
motions and transferring them to real hardware remains an
open challenge. In this work, we introduce a framework for
learning such a controller by leveraging Adversarial Motion
Priors (AMP). Unlike other methods for stylized locomotion,
AMP has the benefit of easily allowing for multiple motions,
but often suffers from mode collapse to a single motion To
address this challenge, we adopt a Multi-Task RL setup, and
demonstrate the added benefit of learning multiple skills for
policy robustness. We validate the effectiveness of our method
through extensive benchmarking on multiple bipedal humanoid
models. Moreover, our controller generates energy-efficient
motions without explicit optimization for energy consumption,
transitions smoothly between different motions, and is deploy-
able on real humanoid robots, demonstrating the first multi-skill
locomotion control policy capable of handling diverse stylized
humanoid motions.

I. INTRODUCTION

Humanoid robots have garnered increasing interest in
recent years, with significant advancements in reinforcement
learning (RL) for achieving robust locomotion control [1]–
[3]. However, despite the rapid development of humanoid
platforms, their walking gaits often appear unnatural. For
instance, many robots adopt excessive knee bending to
enhance stability [4]–[6], a strategy not commonly observed
in human locomotion. Humans, by contrast, move gracefully
moving while maintaining energy efficiency by minimizing
unnecessary knee flexion, exhibiting diverse stylized gaits
such as cat-walking or walking with emotions, and coor-
dinating whole-body movements to convey body language.
Besides having known benefits for cost of transform [7],
natural motions are desirable for humanoid robots if they are
to operate and co-exist in human environments as relatable
and interactive companions. Therefore, we aim to learn
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Fig. 1: Real world deployment of the multi-skill policy performing
the walking skill (top), jogging skill (middle), and transition from
jogging to walking (bottom) on the G1 robot.

controllers from human motion data that exhibit stylized
motion.

Adversarial Motion Priors (AMP) [8] offers a promising
approach for learning stylized locomotion control by training
a GAN-style objective to learn a reward function for guiding
the policy to generate motion that matches a training dataset
distribution, but its effectiveness has largely been limited
to simulated characters with an access to full states of the
environment. When deployed on a real robot, the resulting
stylized locomotion controllers encounter a trade-off between
stability and expressiveness [9]. This is because whole-body
movement involves real-time control of a high-dimensional
nonlinear system, where small perturbations can easily desta-
bilize the entire system. Because of this, previous controllers
tend to prioritize stability over expressiveness, often adopting
conservative robot behaviors such as excessive knee bending
and excluding AMP-style rewards.

To address this challenge we propose to use Multi-Task
Reinforcement Learning to improve robustness while ad-
hering to the style of multiple skills. For clarity we will
say “Multi-Skill RL”, meaning multiple different motions,
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instead of “Multi-Task RL” so as to not be confused with our
concept of a “task” which we define later. Our key insight
is that unlike other locomotion controllers that define very
specific reward functions that do not offer much flexibility,
AMP prescribes softer constraints on the resulting motion, al-
lowing the controller to potentially learn a whole distribution
of motions. These additional motions, or “skills”, not only
benefit exploration during training (indeed they often help
each other learn where a single-skill policy would not), but
also serve to improve policy robustness. However, increasing
motion diversity under these challenging conditions often
leads to mode collapse in adversarial learning frameworks
(e.g., resulting in deficiencies when using AMP in the
benchmark presented in [10]), where the learned policy fails
to capture the full spectrum of natural movements and instead
converges to an easier-to-learn maneuver. To address this, we
also condition the discriminator on a representation of the
skill in addition to the policy.

A. Contributions

In this work, we aim to ascertain the feasibility of devel-
oping a unified locomotion controller that enables humanoid
robots to perform diverse stylized locomotion using AMP
and Multi-Skill RL. Our key contributions are as follows:

• We develop a learning framework that enables various
stylized whole-body locomotion skills on humanoid
robots using a single multi-skill policy, deployable in
the real world.

• We motivate the use of stylized locomotion via AMP
over hand-crafted rewards through an in-depth quan-
titative analysis of the resulting motions compared to
bipedal robots trained with traditionally used hand-
designed reward formulations.

• We propose Multi-Skill RL as robustness technique for
stylized locomotion controllers.

We validate our approach on four humanoid robot models
with diverse bipedal morphologies: Digit and Cassie from
Agility Robotics, G1 from Unitree Robotics, and a variant
of the Berkeley Humanoid Robot (BHL) [11]. These robots
represent a range of digitigrade and plantigrade designs, as
well as bipeds with and without an upper body. We use G1
as the testbed for hardware experiments, while all four robots
are employed for benchmarking and ablation studies of the
proposed algorithm.

B. Related Work

Reward Specification for Locomotion: In locomotion,
reward specification is difficult and often involves optimizing
many different potentially conflict quantities. To address
these issues, researchers have investigated task-specific ac-
tion spaces [12], [13], complex style reward formulations
[1], [14]–[16], and curriculum learning [17], [18]. These
approaches achieve state-of-the-art results in locomotion, but
defining custom action spaces and hand-designing reward
functions requires substantial domain knowledge and a deli-
cate tuning process. Additionally, these approaches are often
platform-specific and do not generalize easily across tasks.

Learning Stylized Motion for Humanoids: In the realm
of computer graphics, Adversarial Motion Priors (AMP) [8]
leverage GAN-style training to learn a “style” reward from
a reference motion dataset. The style reward encourages the
agent to produce a trajectory distribution that minimizes
the Pearson divergence between the reference trajectories
and the policy trajectories [19]. However, AMP is typically
used in character animation domains where the simulated
characters have access to a fully observable state [20]–
[22]. Achieving expressive motions on a real robot typically
requires very complex reward functions or limits the human-
like motion to the upper body only [23], [24]. Recent work
uses a discriminator reward for whole body locomotion on
a real humanoid robot [9], but is limited in expressiveness
and task diversity due to its phase condition in the policy.
Concurrent work has succeeded in achieving human-like
locomotion on a real robot, but uses reference motion in
the policy observation and is therefore also limited in task
diversity since the reference motion essentially acts as a
phase condition [25]. By contrast, our controller achieves
human-like locomotion on a real robot across a diverse range
of skills and tasks using a simple reward made possible by
motion priors.

II. PRELIMINARIES

A. Terminology

We briefly introduce the terminology of “skill” and “task”
in the context of legged locomotion control to align readers
with our writing. In this domain, a skill refers to different
gaits, primarily distinguished by their contact plans—i.e.,
variations in contact timing and sequence define different
skills. For example, walking, jogging, running, and walking
with distinct styles, such as catwalking and nominal walking,
each have different contact timings, making them distinct
skills. A task, on the other hand, involves a specific objective
to achieve, not the manner in which to achieve it. For
instance, a nominal walking skill can be applied to perform
different tasks, such as tracking various target velocities.
Importantly, a single skill can be used for multiple tasks,
and conversely, a given task (e.g., moving at 0.5 m/s) can be
realized using different skills. This distinction is exemplified
in prior work, such as the single-skill multi-task bipedal
locomotion policy developed in [3] and the non-conditioned
multi-skill multi-task quadrupedal policy from [10], where
the policy autonomously selects the appropriate skill based
on the given task. However, in these approaches, the human
operator has no control over which skill the robot performs.

B. Problem Definition

We formulate the problem of control for bipedal locomo-
tion as a Markov Decision Process (MDP). An MDP is a
5-tuple (S,A, R, P, γ) defined by a state space S which is
the set of possible environment states, action space A which
is the set of possible actions, reward function R(st, at, st+1)
which gives the reward of taking action at in state st at
timestep t and ending up in state st+1, transition function
P (st+1|st, at) describing the probability of ending up in
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Fig. 2: Overview of the framework. A discriminator takes as input
an observation oDt and produces the learned style reward rstyle

t .
Additional reward rtask

t based on adherence to the task is given
by the environment, yielding the total reward rt used to update
the policy. Our robot platforms are also shown in the environment
block, from left to right: Digit, Cassie, BHL, G1.

state st+1 when taking action at in state st, and discount
factor γ which serves to discount future rewards.

In the real world, the exact state of the environment is not
accessible. Instead, we make observations of the environment
to gain limited information about the true state. We introduce
the notion of an observation space O ⊆ S and an observation
ot comprised of measurable quantities of the environment.
The problem formulation now takes the form of a Partially
Observable Markov Decision Process (POMDP) to highlight
the fact that we do not have full observability of the state.
Details of our observation and action spaces are given in
section III-A.

To simulate an agent that learns to act optimally within
the POMDP, we define a policy π : O → A which takes
observation ot ∈ O as input and outputs actions at ∈ A at
each timestep t. The policy is implemented using a neural
network. We learn the parameters of the policy network using
model-free reinforcement learning (RL). Model-free RL is a
method of solving MDPs that maximizes the expected sum
of future discounted rewards. Concretely, for a policy π, the
objective is to maximize:

J(π) = Eτ∼π

[
T−1∑
t=0

γtrt

]
, (1)

where τ = {(ot, at, rt)}T−1
t=0 is a trajectory produced by the

policy when acting in the environment. We use Proximal
Policy Optimization (PPO) [26] as our RL algorithm. To
handle Multi-Skill RL, we consider a set of skills Ω and
tasks which we append to the observation at each timestep.
Concretely, ei ∼ Ω and v∗ ∼ will be our skill one-hot
encoder and task specification (in this case target velocity),
but these could be any skill and task formulation in general.
We model tasks as “what” to do and skills as “how” to do
it.

C. Adversarial Motion Priors

Style Reward: In Adversarial Motion Priors (AMP) [8],
a style reward function is learned that encourages the distri-
bution of policy-generated trajectories to closely match the
distribution of reference trajectories. AMP assumes access
to a dataset of reference motions dM and learns a style

TABLE I: Parameters for Domain Randomization

Parameter Distribution and Range Unit

Modeling Error Uniform
Floor Friction Coefficient [0.4, 1.2]

Link Mass [0.8, 1.2]× default kg

Pelvis Mass [−1, 1] + default kg

Friction Loss [0.8, 1.2]× default
Armature [0.8, 1.2]× default
Random Perturbations [−0.5, 0.5] m s−1

Action Delay [0, 50] Hz

Sensor Noise Uniform
Motor Position [−0.05, 0.05] rad

Motor Velocity [−0.5, 0.5] rad s−1

Projected Gravity Noise [−0.05, 0.05] m

Base Angular Velocity [−0.2, 0.2] rad s−1

reward function concurrently with the policy using a GAN-
based approach. More specifically, the policy acts as a
generator while a discriminator learns to distinguish between
the reference data dM and the policy-generated data dπ . In
doing so, a style reward can be calculated which is larger
when dπ is close to dM and lower when dπ is far from dM.

The discriminator is implemented as a neural network Dψ

as in [8]. Dψ takes input oDt , which need not be the same as
the policy input oπt , and outputs a scalar value dt ∈ [−1, 1]
representing whether oDt came from the reference data or the
policy. A value closer to -1 means the discriminator believes
oDt came from the policy, while a value closer to +1 means
the discriminator believes oDt came from the reference data.
Using dt, we can then compute the style reward as follows:

rstyle
t = max{1− 0.25 · (dt − 1)2, 0}. (2)

Task Reward: The AMP framework optionally allows for
additional hand-crafted reward terms, which we call task
rewards. Because of the strong prior given by the style
reward, these hand-crafted task rewards can be much simpler
than would otherwise be required for achieving expressive
locomotion. In general, this reward could encompass any
quantity that should be explicitly optimized, such as min-
imizing energy output or tracking a heading angle. In our
experiments, we use a simple task reward based on tracking
a target velocity. Details of our reward functions are given
in section III-B.

III. METHOD

A. Observation Space and Action Space

Observation Spaces: The policy input oπt is comprised of
the rotation in quaternion form θt, joint positions qt, joint ve-
locities q̇t, and previous action at−1. This information from
the previous 10 timesteps, including the current timestep t,
is concatenated along with a target xy velocity v∗ and one-
hot skill encoding ei for skill i. The value function input
oVt is constructed in a similar manner, but with additional
privileged information, namely, the base linear velocity vt
and angular velocity ωt. The discriminator input oDt contains



the joint positions, joint velocities, feet and hand positions
in the robot’s local frame pfht , and ei, and uses a 3-timestep
history. The target velocity is always in the robot’s local
frame. Our control frequency is λenv = 30Hz.

oπt =
[
{θt′ , qt′ , q̇t′ , at′−1}tt′=t−9, v

∗, ei

]
(3)

oVt =
[
{vt′ , ωt′ , θt′ , qt′ , q̇t′ , at′−1}tt′=t−9, v

∗, ei

]
(4)

oDt =
[
{qt′ , q̇t′ , pfht′ }tt′=t−2, ei

]
(5)

Action Space: The action at represents the desired joint
position offsets from a nominal joint position. Once the
desired joint positions are calculated, we apply a low-pass
filter to attenuate high-frequency noise in the action. We find
that the low-pass filter results in a significant learning speed-
up. After the desired joint positions are filtered, the motor
torques are computed using PD control.

B. Reward

Following section II-C, we have two distinct sources of
reward. The first is a style reward, computed as in Eq. 2. The
second is a task reward, intended to track a target velocity,
and is formulated as

rvel
t = max {1− ∥v∗ − vt∥2 , 0} , (6)

where vt is the linear velocity of the robot’s base at timestep
t and v∗ is the target velocity. This reward formulation
encourages the policy to attempt movement where otherwise
it might opt to stand still to minimize the risk of falling over.

For most motions, Eq. 6 is a sufficient task reward,
however it is sometimes possible for the policy to exploit
subtleties in the reference motion or robot morphology
that lead to unnatural-looking motions while still achieving
a reasonable style reward. For example, when learning a
jogging motion for the Cassie robot, it instead learned
an unnatural-looking hopping motion. Consequently, it is
sometimes necessary to add additional terms to the task
reward to discourage such behaviors. However this reward
tuning process is generally much simpler thanks to the strong
prior offered by the style reward.

For the Digit and G1 robots, we simply use the task reward
rtask
t = rvel

t . For the Cassie robot, we additionally include a
penalty that gives zero task reward if both feet are off the
ground to discourage the aforementioned hopping behavior:

rtask
t = rvel

t · 1{At least one foot on ground}. (7)

For BHL, the robot sometimes stalled at the beginning of
episodes. To prevent this, we include the foot velocities in
the robots local frame to the discriminator observation.

With task and style reward functions defined, we can
compute the total reward rt at each timestep as

rt = wstyle · rstyle
t + wtask · rtask

t , (8)

where wstyle and wtask are weights on the task and style
reward functions, respectively. We use wstyle = 2 and
wtask = 1 for all experiments. An illustration of our complete
framework is given in Fig. 2.

C. Simulation Environment
For our simulator, we use Mujoco [27] a general purpose

physics engine commonly used in robotics research. We
choose Mujoco for its ability to model under-actuated joints
and broad modeling capabilities. It is worth noting, however,
that recent work [28] uses a novel method of modeling
Digit’s under-actuated joints in Isaac Gym. In order to fa-
cilitate fast iteration on sim-to-real experiments, we also use
MJX for the G1 robot only. For domain randomization, we
randomize the dynamics of the environment during training.
We adapt the domain randomization practices from Li et
al. [29], which addresses two main sources of error in
the sim to real gap: 1) modeling error of the robot and
environment and 2) sensor noise. The parameters for the
domain randomization procedure and their ranges are given
in Table I. We only perform domain randomization on the
G1 training.

IV. EXPERIMENTAL SETUP

A. Baselines
We will now comprehensively outline each of our base-

lines and ablations discussed in section V. We compare our
method to two established baselines for stylized locomotion
in simulation and several ablations to highlight the important
components of our method in both sim and real.

Ours: Our multi-skill policy for natural locomotion de-
tailed in section III.

Motion Tracking Baseline (MT): A dense motion track-
ing reward that matches a target state frame-by-frame and
has been shown to work on biped robots [29]. We follow the
reward formulation of [29] and do extensive tuning on the
weights to fit our robots:

rMT
t = wT [rqlt , r

qu
t , rq̇t , r

v
t , r

θ
t , r

ω
t , r

u
t , r

f
t ]

where rq̇t = exp(−ρi ∥q̇ − q̇∗∥22), with q̇∗ being the reference
joint velocities, and other terms are similarly defined. The ρi
and w terms are scaling factors and reward weights that we
tune for each robot. The reward terms compute errors in the
lower body joint positions, upper body joint positions, global
position, target velocity, global rotation, angular velocity,
torque, and foot contact forces, respectively. We include the
one-hot skill encoding in the policy observation as well as
target joint positions for the next timestep. This baseline is
discussed in our sim experiments in section V.

Energy Consumption Baseline (EC): The reward formu-
lation from Fu et al. [30] that shows natural locomotion as
an emergent property. Although this method was shown to
work on quadrupeds, we investigate its application to bipedal
robots. This baseline is discussed in section V-A.

Single Skill Ablation (SS-Walk): Our method without a
multi-skill policy. There is no skill conditioning in the policy
or discriminator. This ablation is discussed in our real-world
experiments in section V-D.

No Skill-Conditioned Discriminator (NSCD): Our
method without conditioning the discriminator on the skill
representation during training. This ablation is done in sim-
ulation and is discussed in section V-E.



B. Motion Dataset

We aim to learn a single policy that is capable of mimick-
ing multiple locomotion gaits from human reference motion.
We take three distinct locomotion gaits from the SFU dataset
[31] as our reference motions. Each reference motion is
the instantiation of one skill. We retarget these motions to
the joint space of each robot using Pybullet’s [32] inverse
kinematics solver. Specifically, the “0018 Catwalk001”,
“0007 Walking001”, and “0005 Jogging001” motions for
cat-walking, walking, and jogging gaits. Importantly, for the
MT baseline we also clip reference motions to make them
approximately periodic based on Eq. 10. For our method we
do no such clipping, as we do not require periodic motions.

C. Training Details

Learning Algorithm Details: The policy, value function,
and discriminator are all implemented as neural networks
with hidden layer sizes (1024, 1024, 512). We run PPO for
30K iterations using a buffer size of 4096 (approximately
120M samples) for an initial training phase without do-
main randomization. The policy and value networks use an
adaptive learning rate initialized at 1e-5 and update based
on the KL divergence, while the discriminator uses a fixed
learning rate of 1e-3. To prevent mode collapse to a single
behavior, we find several exploration strategies helpful. We
use learnable action noise on the policy output with initial
standard deviation 0.5 and initialize from a state in the
reference data with probability 0.1. For the G1 only, we train
in MJX [33] with 4096 parallel environments and a horizon
of 32 steps for a total buffer size of 131072. For this reason,
the G1 results should not be compared too strictly to the
results of other robots. We deviate from the training setup
of the other robots for our G1 experiments due to the added
challenge of sim-to-real to iterate more quickly.

Metrics: We compare the poses error in joint space,
energy efficiency, and RMSE of the target velocity. The pose
error epose is computed as the ℓ2 norm of the distance in joint
space between the robot’s current pose and the reference data
and is meant to quantify adherence to the intended style.
Because the policy motion can be out of phase with the
reference motion, we compare the current joint positions qt
to a one-second sliding window Wt of the reference data q∗t
centered at t.

epose(q, q∗) =
1

T

T−1∑
t=0

min
t′∈Wt

∥q∗t′ − qt∥2 . (9)

To approximate energy E, we compute the instantaneous
power Pt at each timestep using the motor torques ut
and joint velocities q̇t, then numerically integrate to obtain
energy.

Pt = |ut|T |q̇t| (10)

E =
1

T

T−1∑
t=0

1

λenv

∑
t′∈Wt

Pt′ . (11)

To compute target velocity error, the target x (forward)
velocity vx ∈ [0.5, 1.5] m s−1 is sampled uniformly and the
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Fig. 3: Episode length and target velocity error for each method.
The maximum episode length in the environment is limited to
20 seconds. Target x (forward) velocity is sampled uniformly in
[0.5, 1.5] and target y velocity is always 0.

y velocity is 0 for all motions. Importantly, for MT training
we also clip the reference motions to make them cyclic based
on Eq. 10. For our method we do no such clipping, as we
do not require cyclic motions.

V. RESULTS

In this section we highlight the advantages of our method
over the baselines in terms of learning efficiency, energy
efficiency, and versatility of the resulting policy. We also
discuss key design decisions in our method through ablation
studies. We select the Digit and BHL platforms for our
comparison to cover both digitigrade and plantigrade mor-
phologies. Additional results for our method are provided for
the G1 and Cassie platforms, while hardware experiments are
conducted on G1. Due to the training differences mentioned
in section IV-C, we do not compare G1 performance to
that of other robots, rather we include the G1 results for
completeness. For all statistics, we average across 5 seeds.

A. Learning Performance

Our method produces more robust policies that are
better able to track target velocities. We compare the
episode length over the course of training in Fig. 3 (left).
Measuring episode length allows for a more fine-grained
analysis than success rate alone at a particular episode length
threshold. The maximum episode length is 600 steps (20
seconds). It is possible for the policy to learn standing
still, artificially increasing the episode length, however low
target velocity error shown in Fig. 3 (right) assuages these
concerns.

For both Digit and BHL, our method achieves significantly
higher episode length than MT, indicating that our controller
produces more stable motions, while EC falls almost imme-
diately. It is worth noting however, that EC was originally
trained for 1.5 billion samples [30], while we train all our
policies for 120 million samples. While it is feasible that
EC could learn with many more samples, we show this
highlight the advantage of our method here in terms of
sample efficiency. Both our method and EC benefit from



TABLE II: Pose Error (epose), Energy Utilization (E), and Target Velocity Error for Different Robots and Motions

Pose Error Energy Utilization Target Velocity RMSE
Method Robot Cat-walk Walk Jog Cat-walk Walk Jog Cat-walk Walk Jog

MT Digit 0.61 ± 0.05 0.56 ± 0.02 0.64 ± 0.08 616 ± 96 478 ± 51 683 ± 101 0.26 ± 0.07 0.24 ± 0.04 0.24 ± 0.04
Ours Digit 0.42 ± 0.08 0.37 ± 0.04 0.33 ± 0.01 493 ± 138 402 ± 70 476 ± 79 0.13 ± 0.03 0.15 ± 0.01 0.13 ± 0.04
MT BHL 0.70 ± 0.08 0.65 ± 0.07 0.70 ± 0.03 76 ± 3.7 78 ± 16 106 ± 14 0.31 ± 0.13 0.27 ± 0.08 0.26 ± 0.06
Ours BHL 0.50 ± 0.04 0.59 ± 0.09 0.52 ± 0.04 43 ± 6.3 47 ± 6.2 63 ± 12 0.26 ± 0.12 0.25 ± 0.07 0.19 ± 0.04

Ours
G1 0.82 ± 0.08 0.87 ± 0.11 0.88 ± 0.2 138 ± 13 139 ± 13 129 ± 9.3 0.24 ± 0.043 0.25 ± 0.05 0.25 ± 0.04

Cassie 0.19 ± 0.02 0.14 ± 0.01 0.21 ± 0.01 121 ± 17 81 ± 11 118 ± 7.3 0.21 ± 0.07 0.32 ± 0.10 0.25 ± 0.04

simple reward functions, yet ours learns with a fraction of
the samples. Because EC fails to learn in the desired number
of samples, the rest of our results focus on comparing our
method to MT.

In MT and our method, Digit achieves higher episode
length than BHL while also following the target velocity
more faithfully. This trend suggests that digitigrade mor-
phologies may be more amenable to learned natural locomo-
tion gaits, particularly at the relatively high speeds present
in our experiments at which digitigrade posture has known
benefits in terms of energy efficiency [7].

B. Energy Utilization

Motion priors trained to mimic human motion yield
energy-efficient locomotion gaits. In addition to providing
a robust controller for locomotion, our method adheres to
natural-looking gaits and does so in an energy-efficient
manner. In Table II, we compare the pose error, energy
efficiency, and target velocity error of our method to MT for
Digit and BHL, and additionally provide results for Cassie
and G1. We show the mean and standard deviation across
5 seeds. Importantly, we train MT for twice as long as our
method to give it an opportunity to reach convergence, and
evaluate the best checkpoint in terms of episode return for
each seed. Note that Table II suggests lower target velocity
errors than in Fig. 3 because the table computes statistics on
successful episodes only.

Our method achieves lower pose error compared to MT
for most motions, demonstrating our method’s effectiveness
at producing more natural-looking gaits. We bold statistics
that achieve better mean performance, but note that on
5 seeds some results may not be statistically significant.
Interestingly, our method also consumes significantly less
energy than MT for BHL (and also potentially for Digit),
despite MT explicitly optimizing for torques and contact
forces whereas our method contains no such reward terms.
This demonstrates the inherent efficiency present in human
motion and the ability of learned motion priors to encode
energy-efficient motion.

C. Velocity-Conditioning and Smooth Motion Transition

Motion priors allow for smooth motion transitions
between different target velocities and different skills.
Transitions between velocities: It is desirable to be able
to move at different velocities while either keeping the
motion the same or changing motions after reaching a certain
velocity, since different motions are more energy efficient at
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Fig. 4: A: Key frames of Digit showing each motion. Cat-walk
demonstrates stationary hands at the hip and short steps, walk
exhibits swinging arms and longer strides, and jog demonstrates
the arms lifted and tucked in. B: Gait patterns showing transitions
between different motions. C: Robot base velocity showing correct
tracking of the target velocity. D: Sum of the absolute values of
motor torques showing no sudden deviations, indicating smooth
motion transitions.

different speeds [30]. However, using an energy consumption
reward with a naive conditioning on the target velocity was
shown in prior work to result in mode collapse [30]. This was
resolved using a more complex approach that involved policy
distillation with several single-task policies each trained
with a constant target velocity. Alternatively, with MT it is
perhaps not surprising that tracking different target velocities
is difficult, since this causes the gait to go out of sync
with the reference motion. These limitations are not present
under our framework, as motion priors objective imposes less
restrictive constraints than that of MT, which relies on frame-
by frame matching, or EC, which imposes energy constraints.
This allows more freedom for the robot to deviate from the
training distribution to match target velocities, indicated by
significantly lower target velocity error compared to MT for
all Digit and BHL motions in Table II.

Transition between motions: Our method is able to
transition smoothly between different motions and veloci-
ties, despite target velocity changes within an episode not
occurring during training. Fig. 4 shows an example of a
Digit policy that transitions from cat-walking at 0.4m s−1

to walking at 0.7m s−1 to jogging at 1m s−1. Our method
accurately tracks the changing target velocity and can be seen
visually to smoothly transition between motions. Moreover,
the torque profile of the motors does not demonstrate large
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Fig. 5: Pose errors of policy motions trained in our method (left of each sub-figure) and NSCD (right of each sub-figure) compared against
each reference motion for Digit (a), Cassie (b), BHL (c), and G1 (d). CW = Cat-walk, W = Walk, J = Jog.

Sim Sim-DR Real
SS-Walk 0.98 ± 0.01 0.87 ± 0.04 0.8

Ours 1.0 ± 0.0 0.96 ± 0.01 1.0

TABLE III: Robustness experiments in simulation (Sim), simulation
with domain randomization (Sim-DR), and real.

deviations, providing further validation of smooth motion
transition.

D. Real-World Experiments

In order to facilitate sim-to-real transfer of the policy, we
made the following adjustments to the training procedure: We
use additional task reward terms of the form exp(−ρ ∥·∥2)
that reward low angular velocity, torque, joint position de-
viation from a nominal pose (i.e. ∥q − qnominal∥), and action
rate (i.e. ∥at − at−1∥). We also replaced the waist and wrist
motion data with small Gaussian noise, effectively biasing
these joints toward 0 without trivializing the discriminator’s
objective. Simply setting these values to 0 would allow the
discriminator to easily distinguish policy versus reference
data, resulting in extremely low style reward.

We deploy our natural locomotion controller to the real
world using the G1 robot. Fig. 1) shows our result in the
real world. The robot was able to perform the walking and
jogging skills. The jogging skill did not end up learning
to keep one foot in the air like a human might do. We
hypothesize that the robot learned this behavior due it it
being more stable, and that explicit foot penalties in the task
reward could correct this. The robot is also able to smoothly
transition between different skills by simply changing the
skill encoding during execution. This would be challenging
for MT because the motion would be out of sync with the
reference.

Multi-Skill RL as a policy robustness technique: We
validate our hypothesis that Multi-Skill RL can be used to
improve robustness policy robustness in both sim and real.
We compare the success rate of our strongest single-skill
policy (SS-Walk) to that of a multi-skill policy (Ours) on
five trials of each. We test in simulation without domain
randomization (Sim), simulation with domain randomization
sampled from the ranges in Table I (Sim-DR), and in real.
A trial is deemed successful if the policy lasts 20 seconds in
simulation and 5 seconds in real (due to space limitations).
We report the average success rate of 100 trials in simulation
and 5 in real to prevent excess wear and tear on the robot.
For simulation, we average the results of policies trained on
5 random seeds. For real, we take the best policy across these

seeds. Table III We find that Multi-Skill RL offers a notable
robustness improvement over a single walking motion. We
hypothesize that this is because learning Multi-Skill policies
inherently involves more exploration during training.

E. Task-Conditioned Discriminator Prevents Mode Collapse

Conditioning the discriminator on the skill encoding
is essential for reliably learning a multi-skill policy.
In simulation, we ablate conditioning the discriminator on
the skill encoding (but still conditioning the policy) and
report results across 5 random seeds. Fig. 5 shows the
mean pose errors of our method and our method with no
skill-conditioning on the discriminator (NSCD) compared
against the reference motion. When using a skill-conditioned
discriminator, the pose error for the policy-generated motion
is lowest with respect to the correct reference motion. In
the NSCD case, the pose error is lowest for all policy-
generated motions when compared against one of the refer-
ence motions, indicating mode collapse to a single motion.
Visually, we confirmed that the policy only learned to imitate
a single motion no matter which skill encoding was provided
to the policy. For Cassie, the difference in pose error between
correct and incorrect motions is not as large due to the lack
of an upper body.

We believe mode collapse occurs because the discrimina-
tor does not necessarily learn a multi-modal distribution of
motions. In the NSCD case, learning only a single motion
does not harm the discriminator’s performance. In contrast,
by conditioning on the skill encoding, the discriminator
is able to match skill encodings in the policy-generated
data with those in the reference data. The effect is that
learning a single motion is now harmful to the discriminator’s
performance. The policy is then forced to learn a multi-modal
distribution of motions to maximize the style reward. We
therefore posit that a skill-conditioned discriminator is nec-
essary for learning multi-skill policies with our framework.

VI. CONCLUSION AND FUTURE WORK

This work represents, to our knowledge, the first use of
Multi-Skill stylized locomotion on a real humanoid robot.
We provide detailed benchmarking and analysis on several
bipedal robot platforms and provide evidence that Multi-Skill
RL is useful for improving policy robustness. In contrast to
prior work based on complex motion-tracking rewards, our
method offers a more simple reward function, is more energy
efficient even without explicitly optimizing for energy, and
can smoothly transition between motions and speeds. An



interesting direction for future work could involve investi-
gating which types of skills are more useful than others
for improving robustness and understanding how the benefits
scale with larger motion datasets.
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